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ABSTRACT 

Numerous algorithms have been developed for 
hyperspectral automatic target recognition (ATR) 
applications.  Many of these algorithms require estimation 
of a background subspace.  The estimation of the 
background subspace has been addressed using multiple 
methods, but most of these methods assume a-priori 
knowledge of the background dimensionality.  In order to 
automate the estimation of the background subspace, we 
present an algorithm based on minimum description 
length (MDL) that can identify the background 
dimension.  Results show that the MDL criterion 
estimates the proper dimension of the background for 
ATR applications.   

1. INTRODUCTION 

ATR algorithms are a key component of the Army’s 
Future Combat Systems.  Of particular interest is the use 
of hyperspectral ATR algorithms for the detection of 
buried targets such as mines and underground facilities.  
Numerous algorithms have been developed for 
hyperspectral ATR and a number of these algorithms 
require the estimation of a target and background 
subspace.  While the target subspace has been developed 
using modeling techniques independent of the image, the 
background is typically estimated directly from the image 
using algorithms such as N-FINDR (Winter, 1999), least 
squares techniques (Heinz and Chang, 2001), and singular 
value decomposition (Manolakis et al., 2001).   

All of these techniques provide a background 
subspace but require the user to identify the 
dimensionality of the background subspace a-priori.  This 
a-priori requirement prevents the adaptation of the 
techniques to full autonomous systems.  In response to 
this, some algorithms have been proposed to 
automatically identify the dimensionality of hyperspectral 
images (Chang and Du, 2004); however, these algorithms 
have focused on spectral unmixing.  Our approach 
focuses only on ATR applications where the dimension 
estimate is used to identify the size of the background 
subspace that leads to improved target detection and 
mitigation of false alarms.    

2. DATA MODEL 

The model used in this paper is the linear mixing 
model (Hapke, 1993).  The linear mixing model assumes 
a pixel is made up of endmembers, each with its own 
abundance.  Endmembers are the spectra representing the 
unique materials in a given image.  For instance, in an 
image that contains dirt, grass, and road, the endmembers 
would be the corresponding unique spectral signatures for 
each of these materials.  Abundances are the amount of 
each material within a given pixel.  Mathematically, these 
concepts are expressed as 
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where x is an D×1 vector that represents the spectral 
signature of the current pixel, M is the number of 
endmembers within the image, E is an D×M matrix where 
each column represents the ith endmember, a is an M×1 
vector where the ith entry represents the abundance value 
ai, and n is assumed zero-mean, iid Gaussian noise with 
variance σ2.  Therefore, given a way to estimate the 
endmembers and abundances, what M should be chosen 
such that the model above provides the best fit to the data 
with lowest dimension? 

3. MINIMUM DESCRIPTION LENGTH 

MDL was proposed by Rissanen (Rissanen, 1978) 
and independently by Schwartz as the Bayesian 
Information Criterion (Schwartz, 1978).  MDL provides 
an estimate of the in-sample training error for model 
selection purposes.  The estimate has been shown to be 
unbiased and consistent.  The MDL can be written 
mathematically as 

NdxLMDL log),(log2 +−= α  (2) 

where L(x,α) is a likelihood equation based on the data x 
with parametersα, d is the dimension of the model, and N 
is the number of training samples used in the likelihood 
equation.  In (1), the pixel can be modeled as a normal 
distribution with mean Ea and standard deviation Iσ2.   

Since the pixel is being modeled with this 
distribution, a likelihood equation can be derived such 
that  
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where D is the number of spectral bands in the 
hyperspectral image.  Using this likelihood and 
simplifying, the MDL for the model in (1) can be 
calculated so that 
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Note that a number of parameters must be estimated 
to calculate the MDL.  The variance is calculated directly 
from the original image.  The endmembers and 
abundances are calculated for this work using the 
Unsupervised Fully Constrained Least Squares (UFCLS) 
algorithm (Heinz and Chang, 2001).  Finally, the 
parameter d must be calculated which is a measure of the 
“dimension”.  In this application d becomes the number of 
endmembers multiplied by the number of spectral bands.  
Replacing d into (4) results in  
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4. EXPERIMENTAL RESULTS 

To test the ability of the BIC to estimate the “best” 
number of endmembers for ATR, MDL values were 
calculated for varying number of endmembers in both 
synthetic and real hyperspectral images.  The MDL values 
were then compared using the performance of a hybrid 
target detector (Broadwater et al., 2004).  At the number 
of endmembers where the MDL obtains a minimum 
value, the detector should provide its best performance.   

The synthetic image was created using an AVIRIS 
image from the Moffett Field data set.  Target signatures 
were inserted at known locations with varying 
abundances.  The results in Table 1 show that the MDL 
and detector achieved their best performance with five 
endmembers.   

Table 1: MDL Results for Synthetic Image 

# Spectral  
Signatures 

False  
Alarms MDL 

2 7586 21358 
3 32 14550 
4 128 3736 
5 1 1259 
6 3 1409 
7 3 1615 
8 2 1799 
9 3 1998 

10 3 2208 
 
The second experiment was performed on a 

hyperspectral image of a live mine site.  The image 

contained 1200×256 pixels with 256 spectral bands in the 
visible to short-wave infrared spectrum.  Forty-eight 
surface mines were present in the image.  Twenty-four 
mines were M19s and the other twenty-four were M15s.   

The experiment was designed to identify only the 
M19 mines in the image.  The MDL estimated that nine 
endmembers should be used.  When using these nine 
endmembers, the detector was able to find all 24 M19 
mines with zero false alarms.  When the detector used less 
than nine endmembers, false alarm rates increased 
significantly.   

5. SUMMARY 

The MDL criterion has been demonstrated as a way 
to estimate the number of endmembers for ATR 
applications.  In both synthetic and real hyperspectral 
images, MDL automatically chose the number of 
endmembers that provided the best overall detection 
results.  Based on this work, the MDL criteria can be used 
to implement a fully automatic method to estimate the 
structured background for ATR applications.   
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